One-axis controlled repulsive type magnetic bearings

Keywords: magnetic bearing, permanent magnet, repulsive type, one-axis type, low rotational loss, polygon mirror, bearingless motor, Halbach array, balance, conveyor

[Mechanical bearings]

OSupport of a certain distance between mover and stator of linear/rotating machines

• Friction loss, need for periodic maintenances, and effect of operating environment.

[Magnetic bearings]

ONon-contact suspension enabled by magnetic force OFrictionless, maintenance-free, and operation under special circumstance

• Expensive, complicated system, and need for power feeding.

[Classification by number of controlled axes]

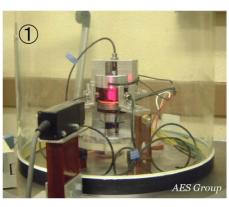
Number of axes	$0 \text{ axis } \rightarrow 5 \text{ axes}$
Control type	passive \rightarrow active
Controllability	$\hat{\mathbf{b}}$ ad \rightarrow good
System	simple \rightarrow complex
General versatility	$low \rightarrow high$
Stator side bearing	small-sized \rightarrow large-sized
Power consumption	$low \rightarrow high$

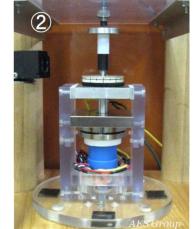
[One-axis controlled type]

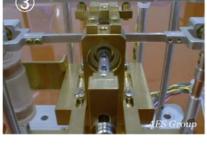
This is a method of repulsive suspension of 4-axes excluding a rotating axis using permanent magnets. This enables simplification of peripheral equipment, miniaturization, power-saving, and low rotating loss. However, from the standpoint of controllability, this method should be limited to special use.

[Classification by axis layout]

Vertical shaft type:


Use of cylindrical magnets→extreme low rotating loss High-speed rotating machine→information device, pump Horizontal shaft type:


Subduction will occur resulted from self-weight.


Low-speed rotating machine \rightarrow loading detective conveyor Non-rotating machine \rightarrow micro-mass measurement balance

[Integration of magnetic bearings and motors]

In the case of using one-axis controlled type, some distances between elements of each part need to be maintained. Use of oneaxis controlled type realizes integration of magnetic bearings and motors which is known as a bearingless motor (BeLM).

Photos: ①poligon mirror ②bearingless motor ③balance ④conveyor